11-1 Solid Geometry

Three-dimensional figures, or \qquad can be made up of flat or curved surfaces. Each flat surface is called a \qquad .
An \qquad is the segment that is the
 intersection of two faces. A \qquad vertex is the point that is the intersection of three or more faces.

Label each part of the rectangular prism:

Face
Edge Vertex

TERM	EXAMPLE
A \qquad is formed by two parallel congruent porygonal faces called bases connected by faces that are parallelograms.	
A \qquad is formed by two parallel congruent circular bases and a curved surface that connects the bases.	
A \qquad is formed by a polygonal base and triangular faces that meet at a common vertex.	
A \qquad is formed by a circular base and a curved surface that connects the base to a vertex.	

Classifying Three-Dimensional Figures

Classify each figure. Name the vertices, edges, and bases.

A

name \qquad vertices \qquad edges \qquad bases \qquad
\qquad ,
B

name \qquad
vertices \qquad
edges \qquad
bases \qquad

Cool Fact

Euler's Formula

The sum of the number of faces and vertices of a polyhedra is
\qquad more than the number of edges.

Fill in the chart:

Faces	Edges	Vertices
	15	9
20	30	
8		12

Ex 2: Name each solid, first on is done for you.

Identifying a Three-Dimensional Figure From a Net
Describe the three-dimensional figure that can be made from the given net.

C.
D.

E.

F.

G.

A is the intersection of a 3-D figure and a plane.

4 Describing Cross Sections of Three-Dimensional Figures
Describe each cross section.
A

B

Describe each cross section.
C.

D.

Ex 5: A plane region that revolves completely about a line sweeps out a solid of revolution. Describe the solid of revolution for each region about the line.
a.

c.

b.

d.

Use these helpful hints to help you draw each:

PRISM

Draw two parallelograms, one above the one above th
other. Make other. Make the lower one the lowe
dashed.

Draw segments connecting the vertices of the Use a dashed segment for the hidden edge.

PYRAMID

Draw a parallelogram
and a point above it.
Make two sides of the
parallelogram dashed.
Ex 2: A hexagonal based pyramid
Ex 1: A hexagonal based prism
\qquad
\qquad

\qquad

Draw segments connecting the vertices of the
parallelogram to the point
Use a dashed segment for the hidden edge.

Ex 3: A cylinder

Ex 4: A cone

11-1 Solid Geometry

Three-dimensional figures, or solids made up of flat or curved surfaces. Each flat surface is called a face \qquad
 can be . An edge is the segment that is the intersection of two faces.
A vertex is the point that is the intersection of three or more faces.

Cool Fact

Euler's Formula

The sum of the number of faces and vertices of a polyhedra is 2 more than the number of edges.
$F+V=2+E$
$F+V-E=2$

Fill in the chart:

Ex 2: Name each solid, first on is done for you. \$ name by its base shape k

 prism

pentagonal pHsm

Identifying a Three-Dimensional Figure From a Net
Describe the turee-dilmenslonal iggure that can be made from the given net.

2 bases \rightarrow prism triangular prism
(四
 square based Pyramid

triangular
pyramid
D.

rectangier cone prism G. 2 cube bases
2 a

A Cross section is the intersection

D of a 3-D figure and a plane.

