Pre-Calc 2.5a Notes

The Fundamental Theorem of Algebra

Fundamental Thm of Alg:

If $f(x)$ is a polynomial of degree n, where $n>0$, then f has at least one zero in the complex number system.

What does this mean?

If you have a third degree polynomial - it will have 3 zeros (can be real and/or imaginary)and 3 linear factors!

Complex Zeros Occur in Conjugate Pairs

Let f be a polynomial function that has real coefficients. If $a+b i$, where $b=0$ is a zero of the function, then the conjugate $a-b i$ is also a zero of the function.

Ex: if $-2-3 i$ is a zero, then so is $-2+3 i$.
You TRY: If $4+2 i$ is a zero, then so is \qquad

Example 1: Match the function with its exact \# of zeros.
(a) 1 zero
$f(x)=x^{2}-14 x$
(b) 2 zeros
$f(x)=3 x^{4}-2 x-1$
(c) 3 zeros
$f(x)=x+2$
(d) 4 zeros
$f(x)=-2 x^{3}-3 x^{2}+4 x-5$

Example 2: Find all zeros of the function. What is the relationship between the number of real zeros and the number of x-intercepts of the graph?
$f(x)=x^{4}-3 x^{2}-4$

Example 3: Find all the zeros of the function and write the polynomial as a product of linear factors.
(a) $f(x)=x^{2}+10 x+23$
(b) $f(x)=3 x^{3}-2 x^{2}+75 x-50$

