Pre-Calc 3.3a Properties of Logarithms

Change-of-Base Formula

You can use any base to convert. Most use base 10 and/or base e since buttons on a scientific calculator.
Base $\mathrm{b}: \log _{a} x=\frac{\log _{b} x}{\log _{b} a}$

Base e : $\log _{a} x=\frac{\ln x}{\ln a}$
Example 1:Rewrite the log as a ration of common log and natural \log then evaluate.

$$
\log _{4} 25=\frac{\log 25}{\log 4}=\frac{\ln 25}{\ln 4} \approx 2.32
$$

*Graphing Calculators have a change of base on them:)

MATH-A:LogBASE

Properties of Logarithms

Product Property : $\log _{a}(u v)=\log _{a} u+\log _{a} v$
$\ln (u v)=\ln u+\ln v$
Quotient Property : $\log _{a} \frac{u}{v}=\log _{a} u-\log _{a} v$
$\ln \frac{u}{v}=\ln u-\ln v$
Power Property: $\log _{a} u^{n}=n \log _{a} u$ $\ln u^{n}=n \cdot \ln u$

Example 2: Write each \log in terms of $\ln 2$ and $\ln 3$.
(a) $\ln 6=$
(b) $\ln \frac{2}{27}=$

Example 3: Use the properties of logs to rewrite and simplify the log expression.
(a) $\log _{9} 243$
(b) $\ln \frac{e^{5}}{7}$

Example 4:

Use properties of logs to expand the expressions as a sum, difference, and/or constant multiple of logs.
(a) $\log 100 x$
(b) $\ln \sqrt[3]{x}$
(c) $\ln \frac{x}{\sqrt{x^{2}+1}}$
3.3a HW
p. 207 \#3-23odd,

37-43odd, 47-63eoo

