10.5 Effects of Changing Dimensions Proportionally

Draw the image of the given figure under the transformation. Find the areas of the figures, and calculate the ratio of the image area to the preimage area.

1. $(x, y) \rightarrow(x, 3 y)$

2. $(x, y) \rightarrow(2 x, y)$

$(x, y) \rightarrow(1.5 x, 3 y)$

\qquad
\qquad
\qquad
\qquad

Ex 4: Fill in the chart below, then make a conjecture.

Polygon	Area	Change in dimension	New Area		
	The height of the parallelogram is doubled.				
12 ft				\quad	The base of the
:---					
triangle is tripled.	\quad				
:---					

If a dimension is changed by a factor of \qquad then the area is also changed by a factor of \qquad .

Ex 5: Fill in the chart below, then make a conjecture.
Figure
Area
Changes
New Area

		The base and the height are both multiplied by 5.	
8 m		The radius is multiplied by $1 / 3$.	
2 in			

If all dimensions are multiplied by a factor of \qquad then the perimeter changes by a factor of \qquad and the area changes by a factor of \qquad .

10.5 Effects of Changing Dimensions Proportionally

Draw the image of the given figure under the transformation.
Find the areas of the figures, and calculate the ratio of the image area to the preimage area. $(x, y) \longrightarrow(x, 3 y)$

2. $(x, y) \rightarrow(2 x, y)$

$(x, y) \rightarrow(1.5 x, 3 y)$

${ }^{\prime}{ }^{\prime}(-2,5) \longrightarrow A^{\prime}(-4,5)$
$B(2,5) \longrightarrow B^{\prime}(4,5)$
$C(3,1) \rightarrow C^{\prime}(6,1)$
$D(-1,1) \rightarrow D^{\prime}(-2,1)$
pre-image area $A=4.4=16 u^{2}$
image area $A=8.4=32 \mathrm{u}^{2}$
ratio of image topreimage $32: 16$ or
pre-image
image

$A(0,2) \rightarrow A^{\prime}(0,6)$
$B(4,2) \rightarrow B^{\prime}(6,6)$
$C(4,0) \rightarrow C^{\prime}(6,0)$
pre-image area $A=\frac{1}{2}(4)(2)=4 u^{2}$
image area $A=\frac{1}{2}(6)(6)=18 \mathrm{u}^{2}$
ratio of image to pre-image 18:4 or $9: 2$

Ex 4: Fill in the chart below, then make a conjecture.

Area is tripled if 1 dimension If a dimension is changed by a factor of X then the area is tripled. is also changed by a factor of x -.

Ex 5: Fill in the chart below, then make a conjecture.

If all dimensions are multiplied by a factor of $\underset{X}{ }$, then the perimeter changes by a factor of x and the area changes by a factor of x^{2}.

