10-6 Geometric Probability

What are the chances that I will roll a 3? \qquad

When working with probability, the set of all possible outcomes of an experiment is called the \qquad .
Any set of outcomes is called the event.

In geometric probability, the probability of an event is based on a ratio of geometric measures such as \qquad and \qquad .

Geometric Probability
Example Sample Space

	All points on $\overline{A D}$	All points on $\overline{B C}$	$P=$
$A \quad$All points in the circle	All points in the shaded region	$P=$	
	All points in the rectangle	All points in the triangle	$P=$

Ex 1: A point is chosen randomly on AD, find the probability of each event.
a. $P=\frac{A C}{A D}$

b. A point not on $\overline{A B}$
c. The point is on $\overline{A B}$ or $\overline{C D}$

Ex 2: Use the spinner to find the probability of each:
a. pointer landing on red
b. pointer landing on purple or blue
c. pointer NOT landing on yeallow

Ex 4: Find the probability of a point chosen randomly inside the rectangle is in each given shape.

Round to nearest hundredth.
a. the equilateral triangle
b. the trapezoid
c. the circle

10-6 Geometric Probability

When working with probability, the set of all possible outcomes of an experiment is called the sample space Any set of outcomes is called the event.

In geometric probability, the probability of an event is based on a ratio of geometric measures such as length and area .
(the must be measurable)

Ex 1: A point is chosen randomly on $A D$, find the probability of each event.
a. $P=\frac{A C}{A D}=\frac{4+3}{4+3+5}=\frac{7}{12}$

b. A point not on $\overline{A B}=\frac{B D}{A D}=\frac{3+5}{12}=\frac{8}{12}=\frac{2}{3}$
c. The point is on $\overline{A B}$ or $\overline{C D}=\frac{A B}{A D}+\frac{C D}{A D}=\frac{4}{12}+\frac{5}{12}=\frac{9}{12}=\frac{3}{4}$

Ex 2: Use the spinner to find the probability of each:
a. pointer landing on red $\frac{80^{\circ}}{360^{\circ}}=\frac{2}{9}$
b. pointer landing on purple or blue

$$
\frac{360-100}{360}=\frac{260}{360}=\frac{13}{18}
$$

Ex 4: Find the probability of a point chosen randomly inside the rectangle is in each given shape.

Round to nearest hundredth.

$12 \sqrt{3}$

a. the equilateral triangle

$$
\frac{108 \sqrt{3}}{900}=\frac{12 \sqrt{3}}{100}=\frac{3 \sqrt{3}}{25} \approx 21
$$

b. the trapezoid

$$
\frac{75}{900} \approx .08
$$

c. the circle

$$
\frac{36 \pi}{900} \approx .13
$$

Find the area of each:
rectangle $=45(20)=900 \mathrm{~m}^{2}$
trapezoid $=\frac{10(12+3)}{2}=75 \mathrm{~m}^{2}$
equilateral $=\frac{\Delta^{2} \sqrt{3}}{4}=\frac{(12 \sqrt{3})^{2} \sqrt{3}}{4}$
Δ
$=\frac{144 \cdot 3 \sqrt{3}}{4}=108 \sqrt{3} \mathrm{~m}^{2}$
Circle $=\#(6)^{2}=36 \pi \mathrm{~m}^{2}$

