10-6 Geometric Probability

What are the chances that I will roll a 3? _____

When working with probability, the set of all possible outcomes of an experiment is called the _____.

Any set of outcomes is called the event.

In geometric probability, the probability of an event is based on a ratio of geometric measures such as _____ and _____.

Geometric Probability

Example	Sample Space	Event	Probability
A B C D	All points on \overline{AD}	All points on BC	P =
	All points in the circle	All points in the shaded region	P =
	All points in the rectangle	All points in the triangle	P =

Ex 1: A point is chosen randomly on AD, find the probability of each event.

- b. A point not on \overline{AB}
- c. The point is on \overline{AB} or \overline{CD}

Ex 2: Use the spinner to find the probability of each:

- a. pointer landing on red
- b. pointer landing on purple or blue
- c. pointer NOT landing on yeallow

Ex 4: Find the probability of a point chosen randomly inside the rectangle is in each given shape.

Round to nearest hundredth.

- a. the equilateral triangle
- b. the trapezoid
- c. the circle

10-6 Geometric Probability

face contains a 3

1 ← possible outcome 6 ← total samples pace

When working with probability, the set of all possible outcomes of an experiment is called the <u>Sample</u> <u>Space</u>.

Any set of outcomes is called the event.

In geometric probability, the probability of an event is based on a ratio of geometric measures such as <u>length</u> and <u>area</u>. (the most be measurable)

Geometric Probability P = event sample space					
Example	Sample Space	Event	Probability		
A B C D	All points on AD	All points on BC	$P = \frac{BC}{AD}$		
Section	All points in the circle	All points in the shaded region	P = area of sector area of circle	of central angle	
	All points in the rectangle	All points in the triangle	P = triangle area of rectangle		

a.
$$P = AC = \frac{4+3}{AD} = \frac{7}{12}$$
A
B
C
D

Ex 1: A point is chosen randomly on AD, find the

b. A point not on
$$\overrightarrow{AB} = \frac{\overrightarrow{BD}}{\overrightarrow{AD}} = \frac{3+5}{12} = \frac{8}{12} = \frac{2}{3}$$

c. The point is on
$$\overline{AB}$$
 or $\overline{CD} = \underline{AB} + \underline{CD} = \underline{4} + \underline{5} = \underline{9} = \underline{3}$
Ex 2: Use the spinner to find the probability of each:

c. pointer landing on pulpie of blace
$$\frac{15}{360} + \frac{60}{360} = \frac{135}{360}$$

$$\frac{15}{360} + \frac{60}{360} = \frac{135}{360}$$

$$\frac{1}{360} = \frac{1}{360} = \frac{1}{360} = \frac{1}{360}$$

purple
$$\frac{75}{60}$$
 gree $\frac{3}{360} = \frac{3}{8}$

$$\frac{360-100}{360} = \frac{260}{360} = \frac{13}{18}$$

Round to nearest hundredth.

a. the equilateral triangle

$$\frac{108\sqrt{3}}{900} = \frac{12\sqrt{3}}{100} = \frac{3\sqrt{3}}{25} \approx 21$$

b. the trapezoid

c. the circle

Find the area of each:

$$trapezord = 10(12+3) = 75 m^2$$

equilateral =
$$\Delta^2 \sqrt{3} = (12\sqrt{3})^2 \sqrt{3}$$

$$\Delta = 4$$

$$= \frac{144.3\sqrt{3}}{4} = 108\sqrt{3} \text{ m}^2$$