11-2
 Volume of Prisms and Cylinders

The \qquad of a 3-D figure is the number of nonoverlapping unit cubes of a given size that will exactly fill the interior.
\qquad principle says
that if two 3-D figures have the same height and
 have the same crosssectional area at every level, then they have the same \qquad .

Volume of a Prism

The volume of a prism with base area B and height h is \qquad

The volume of a right rectangular prism with length ℓ, width W, and height h is \qquad

The volume of a cube with edge length s is \qquad

1 Finding Volumes of Prisms
Find the volume of each prism. Round to the nearest tenth, if necessary.

B a cube with edge length 10 cm

C a right regular pentagonal prism with base edge length 5 m and height 7 m

2 Marine Biology Application
The aquarium at the right is a rectangular prism. Estimate the volume of the water in the aquarium in gallons. The density of water is about 8.33 pounds per gallon. Estimate the weight of the water in pounds.
(Hint: 1 gallon $\approx 0.134 \mathrm{ft}^{3}$)

Volume of a Cylinder

The volume of a cylinder with base area B, radius r, and height h is

Finding Volumes of Cylinders
Find the volume of each cylinder. Give your answers both in terms of π and rounded to the nearest tenth.
A

Exploring Effects of Changing Dimensions
The radius and height of the cylinder are multiplied by $\frac{1}{2}$. Describe the effect on the volume.

original dimensions:
radius and height multiplied by $\frac{1}{2}$:

Finding Volumes of Composite Three-Dimensional Figures

Find the volume of the composite figure.
Round to the nearest tenth.

11-2
 Volume of Prisms and Cylinders

The volume of a 3-D figure is the number of nonoverlapping unit cubes of a given size that will exactly fill the interior.

The Cavalier's principle says that if two 3-D figures have the same height and
$B=$ base
 have the same crosssectional area at every level, then they have the same \qquad Volume -

Volume of a Prism
$B=$ area
of base

The volume of a right rectangular prism with length f, width w, and height h is $\& w h$

1 Finding Volumes of Prisms

Find the volume of each prism. Round to the nearest tenth, if necessary

A

$V=$ lw
$=12 \cdot 10 \cdot 8$
$=960 \mathrm{~cm}^{3}$

B a cube with edge length 10 cm

$$
\begin{aligned}
V & =s^{3} \\
& =10^{3}=1000 \mathrm{~cm}^{3}
\end{aligned}
$$

C a right regular pentagonal prism with base edge length 5 m Units and height 7 m

Find area of Base

Find V in cubic feet

2 Marine Biology Application
The aquarium at the right baa rectangular prism L Estimate the volume of the water in the aquarium in gallons. The density of water is about 8.33 pounds per gallon Estimate the weight of the water in pounds. (HInt: I gallon $=0.13 \mathrm{n}^{1}$)

$$
\begin{aligned}
V & =l \cdot w \cdot h \\
& =(120)(60)(8)=57,600 \mathrm{f}^{3}
\end{aligned}
$$

Since 1 gallon $x 0.134 \mathrm{ft}^{3}$ use dimensional analysis to Calculate

$$
\frac{57,600 \mathrm{ft}^{3}}{1} \cdot \frac{1 \text { gallon }}{0.134 \mathrm{ft}^{3}}=429,851 \text { gallows }
$$

Since 8.33 bs of $\mathrm{H}_{2} \mathrm{O}$ is $\rightarrow 429851(8.33)$ in one gallon
Volume of a Gylintor

$$
\approx 3,580,659 \mathrm{lbs}
$$

The volume of a cylinder with base area 0. radius r, and height h is

$$
\begin{aligned}
& V=B h \\
& V=\pi r^{2} h
\end{aligned}
$$

3 Finding Volumes of Cylinders
Find the volume of earl $\mathrm{c} f \mathrm{finder}$. Give your ansiress both ta terms of " and rounded to the nearest tenth.

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi(8)^{2}(12) \\
& =768 \pi \mathrm{~cm}^{3} \approx 2412.7 \mathrm{~cm}^{3}
\end{aligned}
$$

Exploring Effects of Changing Dimensions
The radius and height of the cylinder are multiplied by $\frac{1}{2}$. Describe the effect on the volume.

original dimensions:

$$
\begin{aligned}
V & =\pi(6)^{2}(12) \\
& =432 \pi \mathrm{~m}^{3}
\end{aligned}
$$

$$
\text { radius and height multiplied by } \frac{1}{2} \text { : }
$$

$$
V=\pi(3)^{2}(6)
$$

$$
>54 \pi \mathrm{~m}^{\prime}
$$

$$
\text { So } \frac{432 \pi}{54 \pi}=8
$$

* If both the radius and heist are molt
* If ti then the radius and heists are molt $\left(\frac{1}{2}\right)^{3}$

5 Finding Volumes of Composite Three-Dimensional Figures
Find the volume of the composite fIgure.
Round to the nearest tenth.

$$
\begin{aligned}
\text { cylinder } & V=\pi r^{2} h \\
& =\pi(5)^{2}(5) \\
& =125 \pi \mathrm{~m}^{3}
\end{aligned}
$$

$$
\underset{V=B h}{\text { prism }}=\left(\frac{6.8}{2}\right)(9)=216 \mathrm{~m}^{3}
$$

