11-4
 Spheres

A

\qquad is the locus of points in space that are a fixed distance form a given point called the \qquad

Hemisphere

Volume of a Sphere
The volume of a sphere with radius r is

Finding Volumes of Spheres

Find each measurement. Give your answer in terms of π.
A the volume of the sphere

B the diameter of a sphere with volume $972 \pi \mathrm{in}^{3}$the volume of the hemisphere

Giant squid need large eyes to see their prey in low light. The eyeball of a giant squid is approximately a sphere with a diameter of 25 cm , which is bigger than a soccer ball. A human eyeball is approximately a sphere with a diameter of 2.5 cm . How many times as great is the volume of a giant squid eyeball as the volume of a human eyeball?
human eyeball:
giant squid eyeball:

Surface Area of a Sphere

The surface area of a sphere with radius r is $S=$

Finding Surface Area of Spheres

Find each measurement. Give your answers in terms of π.
A the surface area of a sphere with diameter 10 ft

B the volume of a sphere with surface area $144 \pi \mathrm{~m}^{2}$
the surface area of a sphere with a great circle that has an area of $4 \pi \mathrm{in}^{2}$

4 Exploring Effects of Changing Dimensions
The radius of the sphere is tripled. Describe the effect on the volume.

5 Finding Surface Areas and Volumes of Composite Figures
Find the surface area and volume of the composite figure. Give your answers in terms of π.

11-4 Spheres

A sphere is the locus of points in space that are a fixed distance form a given point called the center of the sphere.
A hemisphere is half of a sphere. A $\frac{\text { great circle }}{}$ divides a
 sphere into two heimspheres.

volumes arr copal ty Cavaliers Principle lisa will prone that the cross unions tue equal arras in furies 38

$-3_{3}^{2} \sin ^{2}(n)$
$-{ }_{3}^{2} \mathrm{mr}^{\prime}$
Volume of hemisphere $V=\frac{2 \pi r^{3}}{3}$

1 Finding Volumes of Spheres
Find earl measurement. Ghz your aninet in terms of 8 .
A the volume of the sphere
$V=\frac{4 \pi r^{3}}{3}=\frac{4 \pi(9)^{3}}{3}=\frac{4 \pi(729)}{3}$
$=9.72 \pi \mathrm{~cm}^{3}$
(Bi the diameter of a splore with volume $972 \pi \mathrm{ln}^{3} \quad V=\frac{4 \pi r^{3}}{3}$
$\frac{972 \pi}{1}=\frac{\frac{4 \pi r^{3}}{3}}{7} \quad \frac{2916 \pi}{4 \pi}=\frac{4 \pi r^{3}}{4 \pi}$
C the volume of the hemisphere

$$
\begin{aligned}
V & =\frac{2 \pi r^{3}}{3} \\
& =\frac{2 \pi(4)^{3}}{3}=\frac{128 \pi}{3} \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{gathered}
729=r^{3}<\begin{array}{l}
\text { Now } \\
\text { take the } \\
\sqrt[3]{729}=r \\
r=9
\end{array} \quad \text { cube rout } \\
\text { diameter } \\
18 \text { un raise to } \frac{1}{3}
\end{gathered}
$$

$$
V=\frac{4 \pi r^{3}}{3}
$$

2 Biology Application
Giant squid need large eyes to wee their prey in low logic. The gumball of a gland squid is approximately a sphere with a diameter of 25 cm . white is Airfare than a soccer ball. A lyman fetal is approdmately a sphere will a diameter of 2.5 cm . How many times as great is the volume of a giant quid egctall as the volume of a human egebailit
human eyeball
giant squid erebalt $d=25 \mathrm{~cm}$
$d=2.5 \mathrm{~cm}$
$V=\frac{4 \pi(1.25)^{3}}{3}$
$\approx 8.18 \mathrm{~cm}^{3}$

$$
r=12.5 \mathrm{~cm}
$$

$$
V=\frac{4 \pi(125)^{7}}{3} \approx 8181.23
$$

if you take a base ball apart and

$S A=4 \pi r^{2}$
 look adits surface area you will see

Finding Surface Area of Spheres

the volume of a sphere with surface area $14 \pi \mathrm{~m}$

$$
\begin{aligned}
S A & =144 \pi \\
4 \pi r^{2} & =144 \pi \\
\frac{4 \pi r^{2}}{4 \pi} & =\frac{144 \pi}{4 \pi} \\
r^{2} & =36
\end{aligned}
$$

4 equal
Dreles

C the surface area of a sphere with a great circle that has an area of $4 \pi \mathrm{ln}^{2}$

A great circle has Area $\pi r^{2}=4 \pi$

$$
r^{2}=4, r=2
$$

$S A=4 \pi r^{2}$

$$
V=\frac{4 \pi(3)^{3}}{3}
$$

$$
V=\frac{4 \pi(9)^{3}}{3}
$$

5 Finding Surface Areas and Volumes of Composite Figures
$=36 \pi$

$$
=972 \pi
$$

Find the surface area and volume of the composite figure. Give your answers in terms of π.

$$
\text { him sphere } V=\frac{2 \pi r^{3}}{3}=\frac{2 \pi(7)^{3}}{3}
$$

$$
=2 \pi(7)^{2}
$$

$$
=686 \pi \mathrm{~cm}^{3}
$$

$=98 \pi \mathrm{~cm}^{2}$

$$
V=\frac{\pi r^{2} h}{3}=\frac{\pi(7)^{2}(24)}{3}=392 \pi \cos ^{3}
$$

Total
$S A=48 \pi+175 \pi=273 \mathrm{mmo}^{2}$
$V=\frac{686 \pi}{3}+392 \pi=\frac{1435}{2} m^{3}$

