Angle Relationships in Circles

Find each measure.

A m∠BCD

B mABC

 $m \angle STU$ $m\widehat{SR}$

Theorem 12-5-2

THEOREM	HYPOTHESIS	CONCLUSION
If two secants or chords intersect in the interior of a circle, then the measure of each angle formed is half the sum of the measures of its intercepted arcs.	Chords \overline{AD} and \overline{BC} intersect at E .	

Finding Angle Measures Inside a Circle
Find each angle measure.

m∠SQR

2b. m∠RNM

Theorem 12-5-3

If a tangent and a secant, two tangents, or two secants intersect in the exterior of a circle, then the measure of the angle formed is half the difference of the measures of its intercepted arcs.

3 Finding Measures Using Tangents and Secants

Find the value of x.

A

B

C

D

5 Finding Arc Measures

Find m \widehat{LP} .

Formulas for Today:

