2.3a Real Zeros of Polynomial Functions

Ex 1: Graph $f(x)=6 x^{3}-19 x^{2}+16 x-4$

Where does it appear to have a whole number zero? \qquad

How can we find the other two zero values algebraically?

Divide $6 x^{3}-19 x^{2}+16 x-4$ by $x-2$, then use the result to factor the polynomial completely.

\qquad
$f(x)=(\quad)^{2} q(x)$
Let's use long division to find $q(x)$!

Ex 2: Divide the polynomial $3 x^{2}+19 x+28$ by $x+4$, then factor the polynomial completely.
Γ

Ex 3: Divide $8 x^{3}-1$ by $2 x-1$

The Division Algorithm
If $f(x)$ and $d(x)$ are polynomials such that $d(x) \neq 0$, and the degree of $d(x)$ is less than or equal to the degree of $f(x)$, then there exist unique polynomials $q(x)$ and
$r(x)$ such that

The Division Algorithm can also be written as

$$
\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}
$$

where $r(x)=0$ or the degree of $r(x)$ is less than the degree of $d(x)$. If the remainder $r(x)$ is zero, then $d(x)$ divides evenly into $f(x)$.

Ex 4: Divide the polynomial $-2+3 x-5 x^{2}+4 x^{3}+2 x^{4}$ by $x^{2}+2 x-3$

Now for the shortcut! Synthetic Division

Synthetic Division (of a Cubic Polynomial)
To divide $a x^{3}+b x^{2}+c x+d$ by $x-k$, use the following pattern.

Vertical pattern: Add terms Diagonal pattern: Multiply by k

Synthetic Division only works for divisors of the form $x-k$ also $x-(-k)$

Coefficients of quotient
Ex 5: Use synthetic division to divide:
a. $x^{4}-10 x^{2}-2 x+4$ by $x+3$

2.3a Real Zeros of Polynomial Functions

Ex 1: Graph $f(x)=6 x^{3}-19 x^{2}+16 x-4 \quad$ Divide $6 x^{3}-19 x^{2}+16 x-4$

Where does it appear
to have a whole number
zero? $x=2$ or $(2,0)$

Use long division
other two we ra the values
algebraically?
Hero?
$f(x)=(x-2)^{2} \cdot q(x)$
Let's use long division to find $q(x)$!
by $x-2$, then use the result to
factor the polynomial completely.

$$
\begin{aligned}
\text { now factor } & 6 x^{2}-7 x+2 \\
& (2 x-1)(3 x-2)
\end{aligned}
$$

Final fractured polynomial $f(x)=(x-2)(2 x-1)(3 x-2)$ P_ x-intercepts at $2, \frac{1}{2}, \frac{2}{3}$

[^0]

Now for the shortcut! Synthetic Division

Synthetic Division (of o Cubic Polynomial)
To divide $a x^{3}+b x^{2}+c \cdot x+d$ by $x-k$, use the following pattern.

Synthetic Division

 only works for divisors of theform $x-k$ also $x-(-k)$

Ex 5: Use synthetic division to divide:
a. $x^{4}-10 x^{2}-2 x+4$ by $x+3$
$- 3 \longdiv { 1 0 - 1 0 - 2 4 }$

[^0]: Ex 2: Divide the polynomial $3 x^{2}+19 x+28$ by $(x+4$. then factor the polynomial completely.

 $$
 \begin{array}{r}
 3 x+7 \\
 x+4 \begin{array}{r}
 3 x^{2}+19 x+28 \\
 -3 x^{2}+12 x \quad \downarrow \\
 \frac{7 x+28}{7 x+28} \\
 0
 \end{array}
 \end{array}
 $$

 Factored polynomial $(3 x+7)(x+4)$
 Ex 3: Divide $8 x^{3}-1$ by $2 x-1$

 $$
 \begin{array}{r}
 4 x^{2}+2 x+1 \\
 \begin{array}{r}
 8 x^{3}+0 x^{2}+0 x-1 \\
 -8 x^{3} \pm 4 x^{2} \downarrow \\
 4 x^{2}+0 x \\
 -4 x^{2} \pm 2 x
 \end{array} \\
 \frac{2 x-1}{0}+\frac{2 x \pm 1}{0}
 \end{array}
 $$

 * When the remainder is zero, that means the polynomial can be factored

